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Abstract

Temporal uncertainty is a feature of many real-world plan-
ning problems. One of the most successful formalisms for
dealing with temporal uncertainty is the Simple Temporal
Problem with uncertainty (STP-u). A very attractive fea-
ture of STP-u’s is that one can determine in polynomial
time whether a given STP-u is dynamically controllable, i.e.,
whether there is a guaranteed means of execution such that all
the constraints are respected, regardless of the exact timing
of the uncertain events. Unfortunately, if the STP-u is not dy-
namically controllable, limitations of the formalism prevent
further reasoning about the probability of legal execution. In
this paper, we present an alternative formalism, called Prob-
abilistic Simple Temporal Problems (PSTPs), which general-
izes STP-u to allow for such reasoning. We show that while
it is difficult to compute the exact probability of legal exe-
cution, there are methods for bounding the probability both
from above and below, and we sketch alternative candidate
algorithms for this purpose. Computing the probability of
legal execution allows a temporal planner to decide, when
uncertainty is present, whether to accept or reject candidate
plans.

Introduction
Many real-world planning problems involve temporal con-
straints, and a number of planning formalisms and algo-
rithms have been developed to deal with them. One of the
most well-known is the Simple Temporal Problem (STP)
formalism (Dechter, Meiri, & Pearl 1991), which allows the
representation of temporal constraints of the form x−y ≤ d,
where x and y are the times of occurrence of two instanta-
neous events in the plan and d is a real number (or infinity).
For example, if x and y denote the start and end points of
a single action, then the constraint specifies that the action
takes no more than d time units.

The STP formalism, along with generalizations of it, such
as the Disjunctive Temporal Problem (DTP) (Stergiou &
Koubarakis 2000), have been very fruitful, both for theo-
retical investigations of temporal planning and for practical
deployment, notably in NASA’s Remote Agent (Muscettola
et al. 1998). However, these formalisms do not allow any
explicit representation of uncertainty. Yet in most interest-
ing, real-world domains, there are many types of uncertainty,
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including temporal uncertainty, i.e., uncertainty about the
time at which particular events will occur. Such events are
said to uncontrollable, to distinguish them from the events
that are under the control of the agent executing the plan.
Often, plans must include temporal constraints that involve
uncontrollable events: for instance, it may be necessary to
respond to an alarm within two minutes of its going off. The
time of the alarm is not within the control of the execution
agent, but the time of the responsive event is.

In order to model uncontrollable events, an extended
formalism, called Simple Temporal Problems with Un-
certainty (STP-u) was developed (Vidal & Ghallab 1996;
Vidal & Fargier 1997; Morris, Muscettola, & Vidal 2001).
With STP-u’s, one can model plans that contain constraints
involving uncontrollable events. Notice that with such plans,
decisions about when to perform actions must often be de-
ferred until execution time. For instance, one cannot decide
in advance when to respond to an alarm: all one can do is
wait until the alarm goes off and then respond accordingly.

A very attractive feature of STP-u’s is that one can deter-
mine in polynomial time whether a given STP-u is dynami-
cally controllable, i.e., whether there is a guaranteed means
of execution such that all the constraints are respected, re-
gardless of the exact timing of the uncertain events. Not all
STP-u’s are dynamically controllable. As a simple exam-
ple, consider an STP-u that includes a constraint requiring
an agent to respond to an uncontrollable alarm exactly two
minutes before it goes off. If the agent doesn’t control the
alarm–doesn’t know when it will go off and doesn’t have
any means of making it go off–then clearly the agent cannot
act in a way to satisfy this constraint.

A plan generation system can approach the task of plan-
ning under temporal uncertainty by generating a plan for-
mulated as an STP-u and then checking to see whether it
is dynamically controllable. If it is the planner can declare
success. Unfortunately, if it is not, limitations of the STP-u
formalism preclude further reasoning both about the prob-
ability of legal execution, and about strategies to maximize
that probability. Consequently, the planning system does not
know whether to adopt the plan or to search for an alter-
nate, and, if the former–if it does adopt the plan–it is unable
to formulate a effective means of executing it. In this pa-
per, we present a new formalism, called Probabilistic Sim-
ple Temporal Problems (PSTPs), which generalizes STP-u’s



in a way that supports reasoning about the probability that
a plan with temporal uncertainty will be legally executed.
Although is is difficult to compute an exact probability, we
show that there are methods for bounding the probability
both from above and below. An upper bound can be used
to reject a current candidate plan which falls below a given
threshold, while a lower bound can be used to accept a can-
didate plan.

The remainder of our paper is organized as follows. In
the next section, we review the background material on
STPs, STP-u’s, and dynamic controllability, and then, in
Section we introduce the Probabilistic Simple Temporal
Problems (PSTP) formalism. In the following two sections
we describe the technique for computing the upper bound
and lower bound on the probability of correctly executing
a PSTP, respectively. In particularly, we explain how the
problem of computing the lower bound can be addresed by
first converting a PSTP to an STP-u and then tightening the
bounds on that STP-u until it becomes dynamically control-
lable. The following three then sketch some approaches to
this lower bound computation. Finally, Section summarizes
the main ideas and open questions. We note there in particu-
lar that the lower bound computation has an important side-
effect: it results in the specification of an execution strategy
that maximizes the probability of satisfying all the execution
constraints.

Background
The formalism used to represent temporal information and
uncertainty is based on the Simple Temporal Problem (STP)
defined below:

Definition 1. Simple Temporal Problem, STP Solution,
Consistent STP. A Simple Temporal Problem (STP) is a
pair < V,E >, where

• V is a set of variables taking real values representing the
time of occurence of instanteneous events.

• E a set of temporal constraints on the variables of the
form x− y ≤ b, x, y ∈ V , and b ∈ < ∪ {−∞,∞}.

A solution to an STP is an assignment to the variables that
satisfies the constraints. An STP is consistent if there exists
at least one solution.

STPs have been used to represent temporal plans by using
a variable for each action’s start and end point. For example,
if start(A) and end(A) are the events of starting and ending
actionA, then the constraints 5 ≤ end(A)− start(A) ≤ 10
specify the duration of the action to be between 5 and 10
time units.

STP constraints are binary. In order to represent
unary constraints on absolute execution time, e.g., 100 ≤
start(A) ≤ 200, a special variable called time reference
point TR is defined and is assigned time zero; then, the con-
straint above can be written as 100 ≤ start(A)−TR ≤ 200.

Notice that an STP can be viewed as a directed weighted
graph with an edge y → x and weight b corresponding to
a constraint x − y ≤ b. By using an all-pairs shortest path
algorithm on that graph one can discover the distance from
y to x denoted as dxy and defined as follows:

Definition 2. The distance from variable y to variable x
denoted as dyx is the smallest number for which the equation
x− y ≤ dyx holds in all STP solutions.

An STP does not represent uncertainty information about
the occurence of events. All variables are assumed to be
under the direct control of the agent executing the repre-
sented plan and so, if there exists a solution, then the STP
is executable in a way that satisfies its constraints. To ad-
dress this representational limitation, the Simple Tempo-
ral Problem with Uncertainty (STP-u) formalism was de-
veloped (Vidal & Ghallab 1996; Vidal & Fargier 1997;
Morris, Muscettola, & Vidal 2001).

An STP-u makes a distinction between controllable and
uncontrollable variables. Controllable variables are the ones
whose timing of execution is under the direct control of the
agent. Uncontrollable variables are the ones whose timing
of execution depends on Nature (i.e., exogenous factors).
The only information represented regarding the exact timing
of an uncontrollable x is that it will occur sometime within
the interval [l, u] after a controllable y, called the parent of x.
Thus, the STP-u specifies that Nature will respect the con-
straint l ≤ x−y ≤ u. These constraints involving Nature are
called contingent links and are distinct from the constraints
the plan has to respect to be legally executed, called require-
ment links.

Definition 3. Simple Temporal Problem with Uncer-
tainty. A Simple Temporal Problem with Uncertainty STP-
u is a tuple < VC , E, VU , C >, where

• VC and VU are the set of controllable and uncontrollable
variables, respectively, taking real values.

• E is a set of constraints (requirement links) of the form
x− y ≤ b, x, y ∈ VC ∪ VU , and b ∈ < ∪ {−∞,∞}.

• C is a set of contingent links of the form l ≤ x − y ≤ u,
y ∈ VC , x ∈ VU , and l, u ∈ <.

Figure 3 shows an STP-u with two controllable variables
A,B and an uncontrollable variable C. The edge A→ B in
the figure, annotated with the interval [p, q] graphically ex-
presses the constraints p ≤ B−A ≤ q, i.e.,A−B ≤ −p and
B−A ≤ q. Similar constraints hold for the other edges. The
edge A→ C is a contingent link, i.e., a constraint Nature is
expected to observe.

Contingent constraints are always between a controllable
variable y and an uncontrollable variable x. A contingent
link l ≤ end(A)−start(A) ≤ umay be used for example to
specify that the expected duration of an action A is between
l and u time units; however, this duration is not something
that is determined by the agent.

An STP-u, like an STP, should be executed in such a way
that all its constraints are satisfied. However, as we illus-
trated in the introduction with the alarm example, the ex-
istence of uncontrollable events means that decisions about
the timing of controllable events may need to be deferred to
execution time.

Definition 4. Legal Execution, Execution Strategy. A le-
gal execution of a STP-u < VC , E, VU , C > is a schedule
(time assignment) of occurrences of the events (variables)
in VC ∪ VU in a way that satisfies all the constraints in E.



An execution strategy is an algorithm that decides when
to execute the next controllable action given the execution
constraints and the observed history of the uncontrollable
events.

Definition 5. Dynamic Controllability. (Informal) An
STP-u < VC , E, VU , C > is dynamically controllable if
there exists an execution strategy that results in a legal exe-
cution regardless of when the uncontrollable variables in VU
occur (provided they occur within the bounds specified by
the contingent constraints in C).

For a formal defintion of dynamic controllability, see
(Morris, Muscettola, & Vidal 2001), which also provides
a polynomial-time algorithm for checking whether a given
STP-u is dynamically controllable.

How does a domain expert model temporal uncertainty
when specifying the constraints for a planner? For any tem-
porally uncertain event A, the expert must specify some
bounds on the time of occurrence of A. In the STP-u for-
malism, this corresponds to setting the values of l and u in
a contingent link l ≤ end(A) − start(A) ≤ u. The looser
these bounds are set to be, the more likely they are to be ob-
served by Nature, and hence, the more accurate the model
is; in the extreme case, if they are set to positive and neg-
ative infinity, then the expert is certain that the event will
occur within the specified bounds. On the other hand, as
the bounds get looser, the likelihood decreases that the STP-
u is dynamically controllable. And when the STP-u is not
dynamically controllable, the formalism provides no guid-
ance about when to perform the controllable events so as to
increase the probability of observing the constraints. Cur-
rently, there are no principled procedures for deciding the
bounds of the uncontrollables in a way that maximizes the
probability that Nature will respect them and that the result-
ing STP-u will be dynamically controllable.

In fact, because STP-u’s do not explcitly represent prob-
ability distributions of uncontrollable events, they lack the
information needed for such decisions. Probabilistic Simple
Temporal Problems (PSTPs), first presented in (Tsamardi-
nos 2002), are an extension of STP-u that includes such in-
formation in the temporal plan.

Probabilistic Simple Temporal Problems
We begin by defining PSTPs.

Definition 6. A Probabilistic Simple Temporal Problem
PSTP is a tuple < VC , E, VU , Par,P >, where:

• VC is the set of controllable variables with real values.

• VU is a set of real random variables (uncontrollable vari-
ables).

• E a set of constraints of the form x − y ≤ b, x, y ∈
VC ∪ VU , and b ∈ < ∪ {−∞,∞}.

• Par is a function VU → VC that specifies for each un-
controllable its controllable parent.

• P is a set of conditional probability density functions
(pdf) px(t) for each x ∈ VU providing the mass of proba-
bility of x occurring t time units after Par(x).

It is worth noting that in PSTPs, each uncontrollable event
has a single parent, which must be a controllable event;
this is why Par is well-defined. The probability functions
in P deserve further comment. P is a set of probability
distributions px(t) summarizing expectations about the oc-
currence of each uncontrollable event x. More precisely,
given px(t), the probability of x occurring T time units or
less after Par(x) has occurred is given by Px(t ≤ T ) =∫ T
−∞ px(t)dt. These probability distributions are also as-

sumed to be time-invariant i.e. the parameters of the dis-
tribution are constant for a given problem.

As an example, suppose that we want to model the fact
that an actionA has duration normally distributed with mean
duration of half an hour (30′) and 5′ standard deviation σ.
We define the beginning of the action as the controllable
y = start(A), and the end of the action as the uncontrol-
lable x = end(A), for which px(t) follows Normal(30, 5)
(normal with half an hour mean and 5 minutes standard de-
viation). Then we can find out the probability that the action
will finish within in 40 minutes after y (i.e., after we started
the action): P (t ≤ 40) =

∫ 40

−∞ px(t)dt = Φ( 40−30
5 ), where

Φ(z) is the integral of the Normal(0,1) at point z1.

Let us compare modelling action A in a PSTP with mod-
elling the same action in an STP-u. In an STP-u one has
to come up with reasonable bounds l and u and specify that
l ≤ x − y ≤ u is a contingent link to be included in the
plan. In comparison, in an PSTP the same constraint is rep-
resented by specifying that the parent of x is y and that xwill
occur t time units after y where t follows a normal probabil-
ity distribution with mean 30′ and standard deviation 5′.

Given a PSTP, our goal is to assess the probability that
all its execution constraintsE will be satisfied during execu-
tion. More specifically, we would like to calculate the prob-
ability of the plan being legally executed under an optimal
execution strategy. The reason for doing this is to provide
guidance to the planning process: we want to know whether
the current plan is “good enough”, i.e., likely enough to suc-
ceed, or whether, instead, further effort should be put into
looking for a better plan.

(Tsamardinos 2002) shows how to find an optimal execu-
tion strategy for PSTPs under certain conditions. Unfortu-
nately, it is unknown how to compute the probability of suc-
cess of this strategy. However, we do know how to compute
bounds on the probability of success, and that is what we fo-
cus on in the remainder of this paper. In the next section, we
show how to compute an upper bound on the probability of
success. This bound can be used by a system to reject a plan,
if it is too low. In the following sections, we describe how to
compute a lower bound, by converting a PSTP to an STP-u
and then tighening the latter’s bounds until it becomes dy-
namically controllable.

1This integral cannot be solved analytically but is typically
computed numerically or provided in a table form.
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Figure 1: Example for calculating the upper bound.

Bounding the Probability of Legal Execution
from Above

Suppose that an uncontrollable variable x with parent y oc-
curs t time units after y, i.e., x−y = t. If there is no solution
to the constraints inE that admits a value t for the difference
x − y then the probability of completing the execution in a
way that respects the constraints is zero.

As we mentioned earlier, the distance between x and y is
the minimum number dyx for which x − y ≤ dyx holds in
all solutions. Similarly, y − x ≤ dxy holds in all solutions.
and both these inequalities together imply that −dxy ≤ x−
y ≤ dyx in any legal execution. Therefore, with probability
px(t) for t outside the interval [−dxy, dyx] a legal execution
cannot be achieved. Equivalently, a legal execution can be
achieved with probability density at most px(t) for t within
the interval [−dxy, dyx].

Assuming all uncontrollable events are independent of
each other, and using Success to denote the event of a legal
execution occuring, then:

P (Success) ≤
∏

x∈VU ,y=Par(x)

Px(t ∈ [−dxy, dyx])

=
∏

x∈VU ,y=Par(x)

Px(−dxy ≤ t ≤ dyx)

The distances dxy can be determined with a polynomial
all-pairs shortest path algorithm. The calculation of the
probabilities in the product depends on the exact density
functions. As an example, if px(t) is uniform in the inter-
val [a, b], then Px(−dxy ≤ t ≤ dyx) =

dxy−(−dyx)
b−a =

dyx+dxy
b−a ), assuming [−dxy, dyx] ⊆ [a, b].
Consider the example in Figure 1, where the contingent

link is a solid link and the requirement links are dotted. Y
and X represent the start and end (which is uncontrollable)
of an action with probability of duration being uniform be-
tween 5 and 15 time units. S2 represents the start of another
action and TR represents the time reference point. The arcs
represent time constraints. Computing the distances dxy for
this graph, we get−dxy = 8 and dxy = 12. The probability of
the duration represented by these bounds can be calculated
as 10−5

15−5 which is 0.5.

Bounding the Probability of Legal Execution
from Below

Let < VC , E, VU , Par,P > be a PSTP and suppose that we
are given intervals [lx, ux] for each uncontrollable variable
x with parent y. The PSTP and the intervals can be seen as
corresponding to an STP-u with the same controllable and
uncontrollable variables, same constraints, and contingent
links lx ≤ x− y ≤ ux for each uncontrollable variable.

If this STP-u is dynamically controllable then there ex-
ists an execution strategy for legally executing the STP-u
no matter when the uncontrollables occur within these inter-
vals. Thus, in all such cases where the uncontrollables oc-
cur within these bounds an agent can execute the plan with
probability one, provided it follows the execution strategy
returned by the STP-u controllability algorithm. The prob-
ability of all such cases is thus a lower bound on the proba-
bility of a legal execution. Thus:

P (Success) ≥
∏

x∈VU
Px(lx ≤ t ≤ ux)

Unlike the upper bound that we provided in the previ-
ous section, in the lower bound case the bounding intervals
[lx, ux] cannot be easily computed. The looser these inter-
vals the tighter the lower bound will be. To find the tightest
bound possible one needs to solve the following optimiza-
tion problem:
Definition 7. Lower Bound Problem.
Given PSTP < VC , E, VU , Par,P > :

Maximize
∏
x∈VU Px(lx ≤ t ≤ ux)

subject to:
< VC , E, VU , C > being dynamically controllable

where C is the set of contingent links
{lx ≤ x− y ≤ ux |x ∈ VU , y = Par(x)}

and decision variables:
lx, ux, for each x ∈ VU

Unfortunately, it is difficult to directly apply typical con-
straint optimization techniques such as gradient descent or
Newton’s Method on this problem. This is because such
methods require expressing the feasible set as the decision
variable vectors that satisfy a set of equality or inequality
constraints. In the lower bound problem the feasible region
is the set of decision variable vectors that satisfy the single
constraint that the resulting STP-u is dynamically control-
lable.

In the following two sections we sketch candidate algo-
rithms that approximate the optimal solution to the lower
bound problem. We then return to the formulation of the
problem as an optimization problem and suggest ways to
convert it to a form suitable for classical optimization tech-
niques in a way that approximates the problem we are trying
to solve.

Binary Search for for Loosest Bounds
In our first algorithm, we perform binary search for the
bounds on the uncontrollable intervals that are are loose
as possible while still guaranteeing dynamic controllability.
The basic algorithm is as follows:



1. Given PSTP < VC , E, VU , Par,P >, construct a corre-
sponding STP-u S < V ′C , E

′, V ′U , C > where V ′C = VC ,
V ′U = VU , E′ = E, and C = lx ≤ Par(x)− x ≤ ux for
each x ∈ VU , where lx and ux are functions of the probabil-
ity distribution in the PSTP (P ). (For example, lx might be
the mean minus three standard deviations, while ux might
be the mean plus three standard deviations.)
2. Let ε be a small threshold value, and let F = 1.
3. While (S is not dynamically consistent) and (F > ε)
4. Begin
5. If S is not dynamically controllable
6. F = F/2
7. Reduce all contingent edges in S by a factor of F
8. Else
9. F = 3F/2
10. Increase all contingent edges in S by a factor of F
11. End If
12. End While
13. Return S.

Note that this algorithm assumes that the underlying STP-
u can eventually be made consistent by shrinking the bounds
on the uncontrollable events far enough: i.e., if the time
points of the uncontrollables could be pinned down, the net-
work would be executable. Also, we have made an arbitary
decision about the rate at which we modify the size of the in-
tervals, reducing them by a half when the network is not dy-
namically controllable, and increasing them by a half when
it is. To achieve faster convergence, we may want to vary
these values.

This basic algorithm can be improved in several ways.
First, even when an STP-u is dynamically uncontrollable,
this may be due only to some, and not all, of the uncontrol-
lable events. It may be possible to identify which uncontrol-
lable events are to blame while running the STP-u control-
lability algorithm and then to modify the above algorithm
so that only the edges incident upon culpable events are re-
duced. Second, the above algorithm does not take account
of the fact that the PSTP explicitly models the probability
distribution associated with each uncontrollable event. In-
stead, it reduces the time intervals associated with all events
equally. An improved appropriate extension would be to re-
duce the bounds proportionally to the probability mass as-
sociated with each interval. For example, if one contingent
interval has a distribution with very wide variance, while
another has a much steeper distribution with narrower vari-
ance, we would prefer to place tighter bounds on the first–
or, put otherwise, shrink the first interval more–than the sec-
ond, because that would result in less reduction in the overall
probability mass of the uncontrollable events modeled. (See
Figure 2.)

Iterative Tightening
The previous algorithm takes a global approach, attempting
to maximize the probability of legal execution by modify-
ing the bounds of all uncontrollable intervals in parallel (or,
in the first variation of the algorithm, modifying the bounds
of those uncontrollable intervals that contribute to failure of

ε ε

Figure 2: Two uncontrollable events with different distribu-
tions.

the network to be dynamically controllable). An alterna-
tive approach is to operate on one uncontrollable interval at
a time, without considering the effect that the modification
has on other uncontrollable intervals, subsequently iterating
to other uncontrollable intervals as necessary. The intution
behind this approach is that there may be certain uncontrol-
lable events that impose particularly tight constraints on the
network; identifying and maximizing the probability mass
associated with these events is most important in ensuring
that the overall probability of legal execution is maximized.
The selection of the appropriate uncontrollable events can
be done within the context of the dynamic controllability
checking algorithm.

This algorithm works by checking each triangle in the net-
work that contains an uncontrollable edge and two control-
lable edges. Consider the triangle of variables and edges of
Figure 3, where the edge A → C is a contingent link. Ac-
cording to (Morris, Muscettola, & Vidal 2001) the triangle is
dynamically controllable if any of the following three con-
ditions hold:

1. v < 0, and the triangle is pseudo-controllable.

2. u ≥ 0,B−A ⊆ [y−v, x−u], and the triangle is pseudo-
controllable.

3. v < 0, u ≥ 0, u − v ≤ x, and the triangle is pseudo-
controllable.

Pseudo-controllability denotes the fact that the bounds
[x, y] are not “squeezed” by the contraints of the triangle,
or in other words that [x, y] ⊆ [−dCA, dAC ]. The algo-
rithm classifies each triangle as belonging to one of these
cases, and then adds constraints to ensure that the control-
lable edge is not squeezed. This means that if the algo-
rithm is successful–if it determines that the network is dy-
namically controllable–then there is a way to execute the
plan no matter when the uncontrollables occur. The inter-
val [−dCA, dAC ] is the interval dictated by the constraints
in the plan: any time within that interval participates in at
least one solution of the constraints. The interval [x, y] is
derived from the contingent link and is a constraint on Na-
ture. Thus, if there are values of [x, y] that do not participate
in any solution of the constraints, Nature may select one of
these values forbidding the completion of the plan in a way
that satisfies the constraints.

In iterative tightening, the PSTP is converted to an STP-
u with the widest possible bounds for the uncontrollables.
Then as in the dynamic controllability checking algorithm,
each triangle is made dynamically controllable by consid-
ering for that iteration that only that contingent link is not
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Figure 3: Triangular Networks (Morris, Muscettola, & Vidal
2001) .

“squeezed” while other contingent links not in the triangle
can be “squeezed”. The algorithm is as follows.

1. Given PSTP < VC , E, VU , Par,P >, construct a corre-
sponding STP-u W < V ′C , E

′, V ′U , C > where V ′C = VC ,
V ′U = VU , E′ = E, and C = lx ≤ Par(x)− x ≤ ux for
each x ∈ VU , where lx and ux are functions of the proba-
bility distribution in the PSTP (P ). (Let lx = mean minus
three standard deviations, while ux = mean plus three stan-
dard deviations.)
2. Let T be a threshold such that the PSTP has ≥ T
probability of being dynamically controllable.
3. Make W consistent allowing all uncontrollable bounds
to be “squeezed”.
4. Let tw be a triangle containing a contingent link.
5. While(P(W ) ≥ T and tw is not pseudo controllable)
6. Begin.
7. CHOOSE a triangle tw in W .
8. Make tw pseudo controllable.
9. Propagate constraints in W assuming all variables

are controllable.
9. If W is not consistent
10. Retract changes to W
11. Endif
12. End while
13. Return W

The CHOOSE in line 7 represents a non-deterministic
choice and can be heuristically guided to select the triangles
that are relatively more important where the uncontrollable
events participates in many constraints.

Non-Linear Optimization Solutions
In this section, we explore the possibility of solving the
lower bound problem with optimization methods. While the
objective function is suitable for typical optimization meth-
ods, the constraints are not. We now attempt to cast the
constraint of the resulting STP-u being dynamically control-
lable, as a set of inequalities, which would allow non-linear
optimization techniques to be used.

Consider the dynamic controllability checking procedure
of (Morris, Muscettola, & Vidal 2001) described in the pre-
vious section. There we described three conditions that are
used to test whether a network is dynamically controllable.
These three cases direct the design of the our algorithm.

1. Given a PSTP < VC , E, VU , Par,P >.

2. Define a non-linear optimization problem with deci-
sion variables {li, ui|xi ∈ VU}, objective function∏
i PC(li ≤ t ≤ ui), and inequality constraints S as de-

fined below.

3. Initialize S ← E.

4. For each triple of variables A,B,C, where C is uncon-
trollable:

• If v < 0, then no extra constraint needs to be added.
• If u ≥ 0, then S ← S ∪ {B −A ⊆ [y − v, x− u]}
• Else, S ← S ∪ {u− v ≤ x}.

5. Solve the optimization problem.

The solution to the optimization problem will return a set
of values for the decision variables for which all the con-
straints are satisfied. By construction, satisfying all these
constraints implies that the corresponding STP-u is dynam-
ically controllable. This is because each such triangle falls
into one of the three cases above.

In addition, in any solution of the optimization problem
the triangles are pseudo-controllable. This is because any
bounds x, y selected by the optimization for a contingent
link A → C are as squeezed as possible: y ≤ dAC because
if y > dAC then y is outside the feasible set imposed by the
constraints of the optimization problem.

Intuitively, the algorithm is free to select any x, y bounds
on contingent links and impose any cosntraints on Nature
desired. Of course Nature may not observe these constraints
but we can calculate the probability that she will and obtain
the desired lower bound.

Notice that since the three cases are sufficient but not nec-
essary it is conceivable that this is not the tightest lower
bound on the probability that can be achieved using this kind
of approach (i.e., by translating to an STP-u). Specifically,
there is a fourth case that we omitted from consideration: it
involves a disjunctive and ternary constraint called a wait on
C. For example wait < C, 5 > means that one should wait
to execute B until 5 time units have passed after A has been
executed or C has been observed. A non-linear optimization
algorithm that takes into consideration this case may be able
to further increase the bounds [x, y] to include more mass of
probability. It is currently unknown how significant is this
case in practice and how much looser than optimal is a lower
bound that is achieved by ignoring this case.

We now consider specific classes of probability density
functions and the corresponding optimization problems they
give rise to.

Optimization for Uniform Distributions

Let us denote with pi the pdf of the ith uncontrollable vari-
able and suppose that all probability distributions are uni-
form, that is pi(t) = 1

bi−ai , when t ∈ [ai, bi] and zero
outside this interval. Also, Pi(t ≤ T ) = 0, for T < ai,
Pi(t ≤ T ) = T−ai

bi−ai , for T ∈ [ai, bi], and Pi(t ≤ T ) = 1,
for T > b.

Instead of maximizing the actual probability of successful
execution, we can maximize its logarithm, i.e.



Figure 4: Three cases of
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∏
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Pi(li ≤ t ≤ ui) =
∑

i

logPi(li ≤ t ≤ ui)

Now, if ai ≤ li and ui ≤ bi, then Pi(li ≤ t ≤ ui) =
ui−lu
bi−ai . In general, the numerator of this fraction is the length
of the overlap between the inverval [li, ui] and [ai, bi]. So,
we can rewritte the above equation as:

= max
∑

i

log
ξi − σi
bi − ai

, where [ξi, σi] is the interval [a, b] ∩ [li, ui] (intersection).
So, σi = max(li, a) and ξi = min(ui, b). In turn, this is
equivalent to:

max(
∑

i

log(ξi − σi)−
∑

i

log(bi − ai))

, where the last sum is a constant term and can be dropped
from the objective function during optimization (but is re-
quired to compute the final bound on the probability). So
the objective function becomes

max
∑

i

log(ξi − σi)

The constraints of this optimization problem are given by
Steps 2 and 3 in the algorithm of the previous section. That
is, they are the difference constraints among the PSTP vari-
ables (controllable and uncontrollable ones) union the con-
straints required to guarantee the resulting STP-u is dynam-
ically controllable. In addition to these constraints however,
we need to add that σi = max(li, ai), ξi = min(ui, bi), and
that σi ≤ ξi. The max and min functions present problems

to most optimization algorithms. Fortunately, in this case
we can substitute them with the constraints ξi ≤ bi, ξi ≤
ui, σi ≥ ai, and σi ≥ li. This is because, in order to maxi-
mize the objective function the ξi should be as large as pos-
sible; so the optimization engine will increase the ξi until at
least one of the equalities ξi = bi, ξi = ui holds, in which
case ξi = min(ui, b). A similar argument holds for σi.

The feasible region defined by these inequality constraints
is convex, however the function itself is not convex2.

Discussion
The recent literature on planning has shown a growing inter-
est in handling more and more realistic problems, and along
with that has come a concern with various types of uncer-
tainty. In this paper, our focus has been on temporal uncer-
tainty: uncertainty about the time at which certain exoge-
nous, or ”uncontrollable” events will occur. Significantly,
domain experts typically know more about such events than
just the interval of time during which they will occur–they
often know a probability distribution over the interval of oc-
currence. Yet the most successful formalism for planning
with temporal uncertainty, the STP-u’s, don’t allow one to
exploit that knowledge. Instead, the domain expert must
specify fixed bounds on the time during which each uncon-
trollable event must happen. If he sets the bounds too nar-
rowly, he may produce a plan that is dynamically control-
lable, but that nonetheless fails, because the uncontrollable
event occurs outside the modeled time. If he sets them too
widely, he may produce a plan that is not dynamically con-
trollable. And execution strategies only exist for dynami-
cally controllable plans; if an STP-u is not dynamically con-
trollable, there is no effective means of deciding when to
execute the controllable actions in it.

This poses a real problem for the designer of a planner
dealing with temporal uncertainty. It is difficult to know
how to set the bounds on the uncontrollable events; and if
the bounds are set too widely, it is impossible to know as-
sess the probability that the plan can nonetheless be legally
executed, and thus, impossible to make a principled decision
about whether to adopt this plan or whether to search further
for an alternative.

What we would like to do is to enable the domain ex-
pert to specify bounds on the uncontrollable events that are
”as wide as possible”: by this we mean that they maximize
the probability that the events will in fact occur during the
modeled bounds, subject to the constraint that the network
is dynamically controllable. When the bounds are set in this
fashion, there are two results: first, we have an evaluation of
the probability that the plan can be legally executed, which
can be used to decide whether to accept or reject it, and sec-
ond, if it is accepted, then the network with the bounds thus

2To see this: Define f(ξ, σ) = − log(ξ − σ). Then,
∇f(ξ, σ) = [−(ξ − σ)−1, (ξ − σ)−1]. Then the Hessian H =

∇2f(ξ, σ) =

[
a −a
−a a

]
, where a = (ξ − σ)−2. H is not

positive definite, because the eigenvalues λ that solve det(λI −
∇2f(ξ, σ)) = λ2 − 2aλ = 0, can take both positive and negative
values depending on the choice of a.



set can serve as the basis of a legal execution strategy.
Because STP-u’s do not include information about the

probability distribution of the timing of uncontrollable
events, we presented a generalization of them, called Proba-
bilistic Simple Temporal Problems (PSTPs). Unfortunately,
given an PSTP, it is difficult to compute an exact probability
of legal execution. What we can do, however, is bound the
probability, both from above and below. The upper bound
simply provides a way of rejecting a plan if it is not below
a given threshold. The lower bound is arguably more inter-
esting, as it not only what gives a way of accepting a plan,
when it is above a threshold, but is also what allows one to
approximate the widest possible bounds.

We presented three alternative algorithms for approximat-
ing the widest possible bounds. The first performs binary
search for a value v that represents the minimal proportion
by which all the uncontrollable intervals need to be reduced
to achieve a dynamic controllability. The second is similar,
but instead of reducing all the intervals in parallel, it shrinks
one interval at a time, iterating to subsequent intervals as
needed. The third algorithm takes a very different approach,
attempting to reduce the problem to one of non-linear op-
timization. We are not able to convert the entire problem
to an optimization one, and so instead solve only a related
problem that approximates the full problem. The next major
step in this work it to implement these three algorithms and
conduct both experimental analyses of their performance.
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